MATH 504 HOMEWORK 2

Due Friday, February 5.

Problem 1.

(1) Suppose $A \neq \emptyset$ and there is a one-to-one function $f: A \rightarrow B$. Show that there is a surjective (i.e. onto) function $g: B \rightarrow A$.
(2) Suppose B can be well-ordered and there is a surjective function g : $B \rightarrow A$. Show that there is a one-to-one function $f: A \rightarrow B$.

Problem 2. In $Z F^{-}$prove the Schröder-Bernstein theorem i.e. that if $A \preceq B$ and $B \preceq A$ implies that $A \approx B$.
Hint: Suppose $f: A \rightarrow B$ and $g: B \rightarrow A$ are one-to-one.Set $A_{0}=A$, $B_{0}=B, A_{n+1}=g " B_{n}, B_{n+1}=f " A_{n}, A_{\infty}=\bigcap_{n} A_{n}, B_{\infty}=\bigcap_{n} B_{n}$. Let $h(x)$ be $f(x)$ if $x \in A_{\infty} \cup \bigcup_{n}\left(A_{2 n} \backslash A_{2 n+1}\right)$. Otherwise let $h(x)$ be $g^{-1}(x)$. Show that h is well defined and $h: A \rightarrow B$ is one-to-one and onto.

Problem 3. Show that for infinite cardinals $\kappa \geq \lambda$,

$$
|\{X \subset \kappa:|X|=\lambda\}|=\kappa^{\lambda} .
$$

Problem 4. Let λ be an infinite cardinal and κ be any cardinal. Show that

$$
\kappa^{<\lambda}=\sup \left\{\kappa^{\theta} \mid \theta<\lambda, \theta \text { is a cardinal }\right\} .
$$

Problem 5. Assume $C H$ (but not $G C H$). Show that for every natural number $n>0$, $\omega_{n}^{\omega}=\omega_{n}$.

